Campos locales Público Deposited

En la aritmética de campos, los campos finitos, los campos de números y los campos de funciones aparecen tempranamente. Un lugar intermedio ocupan los campos locales, que son estructuralmente más complejos que los campos finitos y se obtienen completando campos de números o campos de funciones con campo de constantes finito. En este libro se estudian los conceptos básicos sobre campos con una valuación no arquimediana, enfocándose al caso de campos completos con respecto a una valuación discreta y con campo residual finito, es decir, al caso de campos locales. Después de un estudio preliminar exhaustivo de las propiedades elementales de estos campos, se hace un análisis de la norma relativa para extensiones de campos locales y se estudia en detalle el automorfismo de Frobenius de ciertas extensiones. Usando lo anterior, se estudian los grupos de Galois de las extensiones abelianas de campos locales, y se obtiene la ley de reciprocidad local correspondiente, junto con sus propiedades. Al final se describe explícitamente el morfismo de reciprocidad local, en el caso de extensiones de Lubin-Tate, y luego se aplica esto al estudio de los grupos de ramificación superior.

Relacionamentos

No conjunto administrativo:

Descrições

Nome do AtributoValores
Creador
Tema
Editor
Idioma
Palavra-chave
Año de publicación
  • 2001
Tipo de Recurso
Derechos
Número de páginas
  • 294
Enlace
División académica
Pie de imprenta
  • Ciudad de México Universidad Autónoma Metropolitana, Unidad Iztapalapa, División de Ciencias Básicas e Ingeniería, 2001.
Licencia
Última modificação: 12/15/2022

Conteúdo disponível para download

Baixe a imagem
Citações:

EndNote | Zotero | Mendeley

Unid